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write he re only the principal components of the in­
ternal energy,. which de pend on the charge density 
distribution. According to [31, the electrostatic and 
kinetic energies of the valence electrons can be writ­
ten in the form 

Ec = ~ 21t (R~ - ~) p2dQ, Ek = 2.87e'/'GoP'/,Q, 
\I 

and the Coulomb interaction energy of a point ionic 
charge with the valence electrons is 

Here the integration runs over the elementary sphere 
volume Q, e is the electron charge, z is the valence, 
a 0 is the Bohr radi us, and 

Integrating and considering that 

Pog = PIQI -+ (PI -+op) boQ, 

where Po is the density of the electron gas with a 
uniform distribution, Q 1 == %7r (Ro - e)3, I::>. Q == 

0/3 7r [R~ - (Ro - 8)3], Po == ze/(4/3) 7rR5, we find that 
to order op 2 the change I::>.U in the internal energy 
of the electron gas in going from a nonuniform elec­
tron density distribution to a uniform one is 

'u - 8 _~ ' RS[S (Ro-S)2 
L.l -15" PlOP 0 ~ 

(2) 

In other words, I::>. U 2: 0 (the roots of the equa­
tion in the square brackets are e == 0 and e == Ro, 
which corresponds to the equilibrium distribution), 
i.e., the transition to the more uniform spatial dis­
tribution of the electron gas density is accompanied 
by an increase in the role of the attractive forces. 
We will transform expression · (2) to a form more 
convenient for investigation. We introduce 0 q = 

opl::>.Q == const, and Po is replaced by 3ze 147rR~. 
Then 

(3) 

If 0/Ro« 1. we have I::>.U ~ (3/10) • (1/Ro)zeoq, 
i.e., in the region of very low te mperatures the 

energy of the metal does not depend on the distribu­
tion of the valence electrons. If we retain the terms 
linear in e,then 

S 
1+-

bou~ ~%C~q(1_2~) ~ 
-10 Ro Ro 1 ~. 

- Ro 

(4) 

Turning to the calculation of the temperature 
coefficient of the compressibility in a solid metal, 
we have from (1) 

(5) 

Here "X.o is the temperature coefficient of the com­
pressibility with a uniform distribution of the elec­
tron density. Consequently, for sufficiently low 
temperatures, (1 I {3 )(d{3 I dT) ~ "X.o' With increasing 
temperature the temper:,l.ture coefficient of the com­
pressibility increases and (1 I (3) (d{3 I dT) > "X.o since 
aulae < O. In the high-temperature region, for 
large e, au lae increases perceptibly, which is ac­
companied by a still greater growth of (ll{3)(d {3 ldT). 

Such a qualitative picture is observed experimental­
ly (see [1, 6]); at low temperatures the compressibil­
ity increases 1.5 to 2 times slower on heating than 
at room temperature; near the melting point the 
temperature dependence of the compressibility be­
comes quite nonlinear. 

Incidentally we note that the mechanism under 
consideration decreases the temperature coeffi­
cient of the bulk expansion of a solid metal in com­
parison to the liquid. To be specific we consider 
alkali metals . According to [3], for a uniform dis­
tribution of the electron denSity we have the follow­
ing expression for the energy: 

C B 
U=-7[;- R3 ' 

in which the equilibrium distance Ro between the cen­
ters of ions, which is found from the condition 
au / oR == 0, is (3B/C) 1/2, where Band C are certain 
constants. In such a treatment Ro does not depend 
on tempe rature and the bulk expansion coe fficient 
is determined by anharmonic effects only. Taking 
(3) into account givcs an additional dependence of 
Ro on the temperature, so that for quitc low tem­
peratures the mechanism under consideration does 
not contribute to a, while for higher temperatures 
we have 

where ao is the bulk thermal expansion coeffi-
cient for a uniform distribution of eleotronic charge. 


